10 Ways We Can Use Technology to Change the World

Monjurul Hasan

Many aspects of human life have the potential to be disrupted by the spread of technology, but very few truly stand out as revolutionary technologies. The disruptive possibilities of synthetic biology, nanotechnology, and blockchain will change our lives.

We Can Use Technology to Change the World
We Can Use Technology to Change the World

These emerging technologies are already having a major impact on society: artificial organs are saving lives and improving the quality of life for many people with disabilities; self-driving cars are taking over highways today, and 3D printing is revolutionizing manufacturing. These developments can revolutionize the way we live.

Technology That Can Change the World

1. Drones: Changing How We Shop, Deliver Things and Save Lives

E-commerce stores and restaurants can use drones to deliver instant products or foods to customers (Goodchild & Toy, 2018). This can cause a paradigm shift in purchasing and delivering goods without scheduling a trip home from work or buying new appliances with cash on delivery. Traditional delivery of goods and services can be very inconvenient for customers in the 21st century.

Drones Technology to Change the World
Drones Technology to Change the World

Drones can be used to rescue people by sending a drone to deliver supplies and aid to people trapped in disasters (Hii et al., 2019). They can water crops and even use the technology to convert deserts into productive farmland (Michels et al., 2021). Drones can change the world by advancing computers, artificial intelligence, satellite communication, and robotics combined with a new aerodynamic design.

2. Virtual Reality and Augmented Reality: Transforming Education and Healthcare

Simulation-based education has been in use for quite a while, teaching us everything from mastering surgical techniques to understanding the deterioration of nuclear reactors. Virtual reality has been embraced as an emerging tool for patient engagement and medicine delivery (Brajčić & Šitum, 2020).

Technology to Change the world through Virtual Reality and Augmented Reality
Technology to Change the world through Virtual Reality and Augmented Reality

Augmented Reality (AR) has improved enterprise training, resource efficiency, industrial working systems, and hands-on training with real-world applications and hardware (Westerfield et al., 2013). Augmented reality has thrived to the point where the next generation of children can grow up in a world where Virtual Reality is an everyday human experience.

3. Artificial Intelligence and Machine Learning: Redefining Every Sector

Advanced hardware and development of the new generation of learning algorithms are making it possible to use big data and machine learning to enable intelligent robots, self-driving cars, and drones, as well as innovative approaches to many problems from cancer diagnosis to climate change.

Technology to Change the World by Artificial Intelligence and Machine Learning
Change the World through Artificial Intelligence and Machine Learning 

In recent years, computer vision, speech recognition, machine translation, and natural language processing have rapidly progressed (Khan et al., 2018). Automation is now taking place in several industries because of machine learning, from self-driving cars and delivery drones to robots in education and medicine (Zhao et al., 2019; Tussyadiah et al., 2020).

4. 3D Printers: Redefining Manufacturing

Currently, manufacturing is very expensive and often requires a lot of material. A consumer-based 3D printing solution is ideally suited for low-end and common products based on simple geometrical shapes (Khan et al., 2018).

3D Printers Change the World
3D Printers Change the World

Industrial Revolution can be possible with more advanced 3D printers, which can create complex products faster and cheaper. When the technology matures and costs drop, it will soon be feasible to use and can change the world.

5. Self-Driving Cars: Reducing Road Deaths and Improve Emergency Response

The amount of people killed on roads per year is staggering, with each passing year bringing even more tragedy and death to those who share our roads. Human errors cause 94% of all car accidents (Khandakar et al., 2019). The self-driving cars could reduce this number to less than 1.

Self-Driving Cars could make our world
Self-Driving Cars could make our world

Further, it would result in shorter emergency response times, saving thousands of lives per year (Liu et al., 2018). Self-Driving Cars would reduce the time it takes for emergency services to reach those in need. This means they can function independently and make more critical decisions under poor lighting or heavy traffic conditions.

6. Digital Currencies and Blockchain Technology: Enhancing Data Security and Revolutionize Transactions

The implications on personal finances are obvious with digital currencies and blockchain technology’s potential to create decentralized marketplaces that are hassle-free and somehow even more trustworthy than existing centralized institutions such as banks, its implications on how the world can change are much greater. Society can shift from the centralized monetary systems of paper money and coins to decentralized digital currencies and blockchain technology (Chen et al., 2020). Traditionally, these issues include transaction timeliness, security, privacy, and systemic risks.

Change the world through Digital Currencies and Blockchain Technology
Change the world through Digital Currencies and Blockchain Technology

The potential uses of blockchain technology are endless and could certainly revolutionize transactions. Data security, privacy, and trust are paramount to keeping users’ identities safe while transacting.

7. Bionic and Prosthetic Organ: Equitable Access for All

Bionic Organs can be created to save people who need an organ transplant but have no other options. A bionic organ would be better than a regular human organ because it won’t require the person wearing it to take antirejection pills and will contain sensors that measure the wearer’s health. Artificial organ technologies are typically used to replace the functions of damaged or destroyed organs.

Bionic and Prosthetic Organ change the world by Equitable Access for All
Bionic and Prosthetic Organ change the world by Equitable Access for All

Bionic organs will change how we live with illness and disease because they can be reused and help save lives by letting more people get transplants.

8. Nanotechnology: Treating Disease and Saving Lives

The benefits of nanotechnology are well known, with a broad range of potential applications in everything from cancer treatment to computer power. Nanotechnology has the potential to provide a real alternative to chemotherapy drugs, which are both dangerous and expensive to produce (Singh et al., 2021).

Nanotechnology change the world by Treating Disease and Saving Lives
Nanotechnology change the world by Treating Disease and Saving Lives

Nanotechnology can target many types of cancer, including lymphoma, prostate, breast, and lung cancer. Nanotechnology has the potential to render many high-end computer systems obsolete because it reduces power consumption, thereby making it much more cost-effective.

9. IoT: Integrating Everything, from Cars to Health Devices to Ships

The Internet of Things (IoT) connects everyone and everything to a network, enabling them to function more efficiently. IoT allows us to electronically manage something previously impossible due to its naturally occurring complexity.

Technology to Change the World by IoT
Technology to Change the World by IoT

Manual tools and techniques have been used to take care of daily tasks. But with the IoT, all these routine chores have become much easier. We are still at a very early stage of IoT development, and there are boundless possibilities for what it can do.

10. Synthetic Biology: Discovering New Drugs

The emerging field of synthetic biology is on the verge of generating synthetic fuels, commercial vaccines, and new medicines using microbes. In addition to potential health benefits for humans and animals, synthetic biology has the power to offer solutions to a variety of environmental problems.

Synthetic Biology Will Change the World
Synthetic Biology Will Change the World

Natural drugs are being discovered in the rainforests and oceans, but these resources are depleted rapidly due to commercial interests. With the development of synthetic biology, inexpensive manufacturing will allow us to manufacture new drugs in a lab setting that would contain fewer chemicals and be less susceptible to contamination (Pokharel & Fang, 2014). New synthetic microbes could be designed specifically for this purpose based on single-cell organisms that can consume organic waste and convert it into energy.


The world faces many challenges in the early 21st century, essential to will be an essential part of our future. The technologies that we can implement today will shape the future of humanity. Technology is making breakthroughs in all fields, from medicine to social media. The world can be changed for the better if it is utilized properly. If we start using technology in our everyday lives and make that a priority, then we will be able to learn and understand technology better. Technology can help us to solve problems, but it cannot do that without help from the human race by putting it into proper use.


  1. Brajčić, H., & Šitum, M. (2020). Virtual Reality in Medicine. Knj. 50–51(2020), 543(50–51), 39–43. https://doi.org/10.21857/yq32oh2jn9
  2. Textile Detailsa, M. H. (2021, November 13). The application of smart textiles has changed the world! Textile Details. https://textiledetails.com/application-of-smart-textiles/
  3. Chen, Y., Chen, H., Han, M., Liu, B., Chen, Q., & Ren, T. (2020). A Novel Computing Power Allocation Algorithm for Blockchain System in Multiple Mining Pools Under Withholding Attack. IEEE Access, 8, 155630–155644. https://doi.org/10.1109/access.2020.3017716
  4. Goodchild, A., & Toy, J. (2018). Delivery by drone: An evaluation of unmanned aerial vehicle technology in reducing CO 2 emissions in the delivery service industry. Transportation Research Part D: Transport and Environment, 61, 58–67. https://doi.org/10.1016/j.trd.2017.02.017
  5. Gramlich, M. A., Smolenski, D. J., Norr, A. M., Rothbaum, B. O., Rizzo, A. A., Andrasik, F., Fantelli, E., & Reger, G. M. (2021). Psychophysiology during exposure to trauma memories: Comparative effects of virtual reality and imaginal exposure for posttraumatic stress disorder. Depression and Anxiety, 38(6), 626–638. https://doi.org/10.1002/da.23141
  6. Guerrieri, M. (2021). Smart Roads Geometric Design Criteria and Capacity Estimation Based on AV and CAV Emerging Technologies. A Case Study in the Trans-European Transport Network. International Journal of Intelligent Transportation Systems Research, 19(2), 429–440. https://doi.org/10.1007/s13177-021-00255-4
  7. Herath, H. M. K. K. M. B., & de Mel, W. (2021). Controlling an Anatomical Robot Hand Using the Brain-Computer Interface Based on Motor Imagery. Advances in Human-Computer Interaction, 2021, 1–15. https://doi.org/10.1155/2021/5515759
  8. Hii, M., Courtney, P., & Royall, P. (2019). An Evaluation of the Delivery of Medicines Using Drones. Drones, 3(3), 52. https://doi.org/10.3390/drones3030052
  9. Khan, U., Safari, P., & Hernando, J. (2018). Restricted Boltzmann Machine Vectors for Speaker Clustering. IberSPEECH 2018. https://doi.org/10.21437/iberspeech.2018-3
  10. Khandakar, A., Chowdhury, M. E., Ahmed, R., Dhib, A., Mohammed, M., Al-Emadi, N. A. M. A., & Michelson, D. (2019). Portable System for Monitoring and Controlling Driver Behavior and the Use of a Mobile Phone While Driving. Sensors, 19(7), 1563. https://doi.org/10.3390/s19071563
  11. Liu, P., Yang, R., & Xu, Z. (2018). How Safe Is Safe Enough for Self-Driving Vehicles? Risk Analysis, 39(2), 315–325. https://doi.org/10.1111/risa.13116
  12. Michels, M., von Hobe, C. F., Weller Von Ahlefeld, P. J., & Musshoff, O. (2021). The adoption of drones in German agriculture: a structural equation model. Precision Agriculture, 22(6), 1728–1748. https://doi.org/10.1007/s11119-021-09809-8
  13. Nakajima, S., Shinya, M., Yuasa, T., & Shiraishi, M. (2015). [Paper] An Optimal Model Subdivision Method for 3D FDM Printers. ITE Transactions on Media Technology and Applications, 3(1), 40–46. https://doi.org/10.3169/mta.3.40
  14. Ong, T., Wilczewski, H., Soni, H., Nisbet, Q., Paige, S. R., Barrera, J. F., Welch, B. M., & Bunnell, B. E. (2022). The Symbiosis of Virtual Reality Exposure Therapy and Telemental Health: A Review. Frontiers in Virtual Reality, 3. https://doi.org/10.3389/frvir.2022.848066
  15. Pokharel, D., & Fang, S. (2014). A Highly Convenient Procedure for Oligodeoxynucleotide Purification. The Open Organic Chemistry Journal, 8(1), 15–18. https://doi.org/10.2174/1874095201408010015
  16. Singh, A. V., Chandrasekar, V., Janapareddy, P., Mathews, D. E., Laux, P., Luch, A., Yang, Y., Garcia-Canibano, B., Balakrishnan, S., Abinahed, J., al Ansari, A., & Dakua, S. P. (2021). Emerging Application of Nanorobotics and Artificial Intelligence To Cross the BBB: Advances in Design, Controlled Maneuvering, and Targeting of the Barriers. ACS Chemical Neuroscience, 12(11), 1835–1853. https://doi.org/10.1021/acschemneuro.1c00087
  17. Tussyadiah, I. P., Zach, F. J., & Wang, J. (2020). Do travelers trust intelligent service robots? Annals of Tourism Research, 81, 102886. https://doi.org/10.1016/j.annals.2020.102886
  18. Westerfield, G., Mitrovic, A., & Billinghurst, M. (2013). Intelligent Augmented Reality Training for Assembly Tasks. Lecture Notes in Computer Science, 542–551. https://doi.org/10.1007/978-3-642-39112-5_55
  19. Zhao, X., Osborne, M., Lantair, J., Robu, V., Flynn, D., Huang, X., Fisher, M., Papacchini, F., & Ferrando, A. (2019). Towards Integrating Formal Verification of Autonomous Robots with Battery Prognostics and Health Management. Software Engineering and Formal Methods, 105–124. https://doi.org/10.1007/978-3-030-30446-1_6

About the Author

Monjurul Hasan

Monjurul Hasan, An On-Page SEO Expert on WordPress. Study in Automobile & Textile Engineering at Bangladesh Sweden Polytechnic Institute (BSPI). Having 3+ years of experience in Automobile and Technical Textile Products. Working at Upwork & Fiverr MarketPlace. Highly interested in technical product development and fashion forecasting.


Leave a Comment